

Abbildung 1: Mückenschrecker

Our ARD - no not the first - but our Animal Repellent Device has so far received the
commands via the PC keyboard. It could stay that way, of course, but who would like
to sit down next to their car with their PC to adjust the AMF (anti-marten frequency).
For this reason and because the ESP32 would otherwise be hopelessly
underemployed, its radio interface is now being put into operation. Welcome to the
blog on the topic

The mosquito repeller - mobile phone application

Because the name is so miserably long, we prefer to stick with SMS-HApp. With the
program gelsnschreck.py we taught our ESP32 in the last episode how it can get
mosquitoes, martens, mice and other animals to run away. There are two sections in
the program that open the door to radio communication. You have probably already
opened this door and sent a few commands with packetsender.exe. With the PC this
is quite cumbersome. It's faster and less complicated with the app that we want to
create today with the MIT-AppInventor2. The following list tells you what you need to
do this.

For the cell phone

AI2-Companion aus dem Google Play Store.

For the mobile app

http://ai2.appinventor.mit.edu
https://ullisroboterseite.de/android-AI2-UDP/UrsAI2UDP.zip
App-Inventor installieren und benutzen – Detaillierte Anleitung
Die fertige App mit der Erweiterung der IP-Eingabe
Die Datei gelsnschrecker.aia, welche den Designer und die Blockdefinitionen enthält

The ESP32

gelsnschreck.py
Link to Hard- und Softwarebeschreibung

The mobile app

We create the app with the help of the
AppInvertor2 tool, which can be used under the
MIT license as free software via a browser (e.g.
Firefox). This means that the application does not
need to be installed on the PC if an internet
connection is available. How to deal with it I have
described in great detail here, so I will not go into it
in more detail now. The use of the UDP extension
for this tool from Ullis robot site is also explained in
detail there.

Our goal is to assign our previous command
acronyms to specific actions on the mobile phone
screen and then to send them to the ESP32. There
are also input fields and start-stop buttons. Like
the gelsnschreck.py program, the screen is divided
into three command groups: wobbling, continuous
tone and frequency bursts. Entering numbers is
sent by tapping on the XMIT surfaces, the buttons
trigger the corresponding action immediately. And
this is what the user interface looks like.

Abbildung 2: Screenshot_ der Oberfläche

https://play.google.com/store/apps/details?id=edu.mit.appinventor.aicompanion3&gl=DE
http://ai2.appinventor.mit.edu/
https://ullisroboterseite.de/android-AI2-UDP/UrsAI2UDP.zip
http://www.grzesina.de/az/blog_robotcar/teil3/robotcar_mcp_d3.pdf
http://www.grzesina.de/az/gelsenschreck/gelsnschrecker.apk
http://www.grzesina.de/az/gelsenschreck/gelsnschrecker.aia
http://www.grzesina.de/az/gelsenschreck/gelsnschreck.py
http://www.grzesina.de/az/gelsenschreck/mueckenstopp_ger.pdf
http://ai2.appinventor.mit.edu/
http://www.grzesina.de/az/blog_robotcar/teil3/robotcar_mcp_d3.pdf
https://ullisroboterseite.de/android-AI2-UDP/UrsAI2UDP.zip

The project file, gelsnschrecker.aia, is available for download. You can import the
project directly into AI2 via the menu My projects - Import project from my Computer.

But please remember to adapt the network address to your own environment.

Abbildung 3: AI2

Creating apps with the AI2 is as easy as stacking building blocks but, like these,
sometimes a bit angular. This has also been shown again in this project. In order for
an entry in a text field such as STARTFREQ to be accepted, the focus must be
removed from this field. But this is only possible by assigning the focus to another
text field by tapping it. Actually, according to the manual, shifting the focus should
also work with buttons, but it doesn't. It is also not possible to assign the focus to a
text field that can only be read but not written to. A second handicap is the fixed
screen size, which is too short for newer cell phones. Despite these weaknesses, the
app works very well, and we'll start with the tricky structure of the interface.

We need the following elements.

Layout area:
Horizontal arrangement
Vertical arrangement

User interface area:
Button
Label
Text box

http://www.grzesina.de/az/gelsenschreck/gelsnschrecker.aia

Extension area:
UDPXmitter

Areas in the window are assigned by so-called arrangements. Horizontal
arrangements allow elements to be grouped next to one another, while vertical
arrangements arrange elements on top of one another. The screen is basically a
vertical arrangement. We start with a label whose text property specifies the title of
the app. If you don’t know what to do with Gelsn-Schreck, give your app the name
Mosquito Schreck. In Lower Bavarian and Austrian usage, the mosquitoes are called
Gelsen (or Gelsn, spoken "Göisn"), so you can now explain the name of the
MicroPython program for the ESP32. If, in the margins of this blog, you are interested
in the details of a special kind of gelato hunt, then I can recommend the text to a
song by Ludwig Hirsch to you. But I warn from the outset against its black Viennese
humor! Our solution to the problem is far more peaceful and harmless.

Back to the AI2. The title of the first functional unit, WOBBELN, follows the title of the
app, also as a label.

Now our packaging logic is in demand. The question is, how can I pack boxes in
boxes, boxes of boxes in a box ...? - OK let's do this graphically.

Abbildung 4: Schachtel-Logik

Without the containers, the arrangements, all elements would be arranged one below
the other. We change that with the large horizontal arrangement in which we put a
button, then a vertical arrangement and finally a second button. So that our input
lines appear above the XMIT field, we need another vertical arrangement. Our labels
and input lines should appear one below the other and in two blocks next to each
other. The graphic tells us everything that is needed for this arrangement.

All elements are listed hierarchically in the Components window. You can see that
some of them have their own names like Start_Wobbeln or Startfrequency. You
can do this with the Rename button.

https://www.songtexte.com/songtext/ludwig-hirsch/die-gelse-43d8df9b.html

Abbildung 5: Components

The appearance of each element is defined in the Properties or Properties window. I
think the names speak for themselves.

Abbildung 7: Bereich Wobbeln

Abbildung 6: Properties

If you have already installed the AI2 Companion on your mobile phone and have a
local wireless network, you can now connect to it to see how the design looks on the
smartphone. As already mentioned, I have described the installation and operation
here.

Now we set up the connection and display a QR code for it.

Abbildung 8: Mit dem AI2-Companion verbinden

Abbildung 9: QR-Code für die Verbindung

We start the AI2 Companion on the mobile phone, + tap Scan QR code and hold the
mobile phone against the PC screen. After a few seconds, our draft will appear on
the mobile phone display. Everything that is changed on the PC from now on also
appears on the mobile phone with a short delay. If there is no interaction for a while,
the connection is canceled and must be re-established.

http://www.grzesina.de/az/blog_robotcar/teil3/robotcar_mcp_d3.pdf

The structures for the other two areas, continuous tone and burst mode, are created
in a similar way. In the meantime, however, you have to set the level of the wobble
arrangement to 10% so that you can work on the third part. Alternatively, you can
switch to "Tablet size" in the viewer.

This is what the component representation of the other two areas looks like. You can
set the properties according to your wishes, this (mostly) does not affect the function
of the elements.

Abbildung 10: Components 2

In the right column at the bottom you can see the UDP functionality added by the
Ullis robot page extension, which makes a UDP client available.

Now the building blocks are stacked and the app is brought to life. As with any other
program, let's start by declaring a few variables. The building blocks are drawn from
the Variables folder, numbers come from Math and the text element from text.

https://ullisroboterseite.de/android-AI2-UDP/UrsAI2UDP.zip

Abbildung 11: Variablen festlegen

When creating the user interface, the fields should be assigned the variable values.
We get a when Screen1.initialize bracket from the Screen1 folder and fill this with the
blocks for assigning the text properties from the folder of the respective element. The
following figure shows the setting of the destination IP address of our ESP32.

Abbildung 12: UDP-Zieladresse setzen

Abbildung 13: Felder füllen

Let's turn to the wobble area. When you tap the OK-XMIT text field, three things
happen. The field gets the focus while one of the input fields loses it. This helps us
determine which field had it. We mark this with a number and note the entry in the
corresponding variable. If, on the other hand, one of the buttons was tapped, we
immediately send the corresponding message to the ESP32.

Abbildung 14: Aktionen im Bereich Wobbeln

Whoever gets the focus is next and that is the text field XMIT_Wobble. When it gets
the focus, the code sequence when XMIT_Wobble.GotFocus uses the global variable
flag to see who submitted it and then does the job. The command acronym and the
corresponding variable content are sent and then flag receives the value 0. Entered
values are displayed in the input label for control.

Abbildung 15: Wobbeln XMIT wurde angetippt

The Continuous Frequency department works according to the same scheme.

Abbildung 16: Dauerton-Steuerblock 1

Abbildung 17: Dauerton-Steuerblock 2

Entering values in the burst range is only feasible with a trick. When you tap an input
field, it disappears behind the keyboard. If a number is entered blindly, the field is still
empty afterwards, the number has passed into nirvana. Now you could take a second
screen or, as I have solved that, push the upper part together so that the burst area
has enough space. This is exactly what happens, as soon as one of the text fields in
this area receives the focus, the horizontal arrangement wobbling goes to the height
of 10%. The input is processed in the same way as in the other two areas.

Abbildung 18: Burst-Steuerung 1

Abbildung 19: Burst-Steuerung 2

Of course, the wobble area must be enlarged again if entries are to be made there.
Because there is no way to set the value for the height back to automatic, as in the
design, you have to specify the height as a numerical value.

Abbildung 20: Wobbeln groß schalten

If we don't have any warnings or error messages, let's start compiling the app.

Abbildung 21: Build App and install

We can either request a QR code so that the app can be downloaded directly to the
mobile phone after completion, or we can save the apk file on the PC so that we can
later transfer or share it, for example via Bluetooth. To download the app, please
follow the instructions on page 20. There is no listing in text form for this part of the
project, it is replaced by the illustration of the blocks.

I wish you happy repelling mosquitoes and marten.

http://www.grzesina.de/az/blog_robotcar/teil3/robotcar_mcp_d3.pdf

